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do Fundio, CEP 21941, Rio de Janeiro, RJ, Brazil 
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Abstract. The Green function for a spinless charged particle in the presence of an external 
plane-wave electromagnetic field is calculated by algebraic techniques in terms of the 
free-particle Green function. 

1. Introduction 

The Dirac equation for the electron in an external plane-wave electromagnetic field 
was solved by Volkov [ l ]  and the Green function for this situation was obtained by 
Schwinger [2]. Although these problems were solved long ago they continue to attract 
attention from the viewpoint of physical applications in the treatment of the interaction 
of laser beams with electrons. Being exactly solvable, different techniques have been 
applied for rederiving the final results. 

A similar situation exists in the case of the non-relativistic Coulomb problem which 
has been solved by several techniques, the most elegant being the algebraic one. The 
commutation relations satisfied by the conserved angular momentum L and the Runge- 
Lenz vector A lead to the calculation of the bound-state energy spectrum, wavefunc- 
tions, Green function and the scattering phase shifts. 

In this paper we consider the application of an algebraic technique to calculate 
the Green function for a charged spinless particle in an external plane-wave electromag- 
netic field of the type considered by Schwinger. We show that it is possible to define 
canonically conjugate operators 2,, 6, which include the effects of interactions and 
lead to a representation of the algebra of the restricted Poincari group. We obtain 
the explicit form of the operators 2,, 6, in terms of the operators x,, r, employed 
in the usual formulation of the problem. Our technique has several features in common 
with the earlier calculations of wavefunctions for the Klein-Gordon equation with 
interaction [3-51. However, our results are valid for any gauge in contrast to the earlier 
ones. 

This paper is organised as follows: in 0 2 we formulate the problem in the coordinate 
gauge indicating how we can go to a general gauge, in § 3 we construct the conserved 
commuting momenta 6, which lead to the Green function, in § 4 the operators iw 
conjugate to 6, are constructed and the Green function calculated in an alternative 
manner, and § 5 contains the conclusions. 
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2. Formulation of the problem 

Let A , ( x )  be the vector potential of the external electromagnetic field F, , (x)  wheret 

F,,(x) =a.A, -a,A,. 

The field F, , (x)  satisfies the free Maxwell equations 

F p ” ,  v = 0 

*FCIY, u = O  

where 
*FW*” - l E C l u e P  

- 2  Fap. 

Since the vector potential is arbitrary u p  to a gauge transformation 

(4) 

we may choose a specific gauge that is convenient for a certain calculation and  then 
go to a general gauge. If we choose the special gauge to be the coordinate gauge [7] 

( X - X ’ ) + A ; ( X )  = O  (6) 

where x’  is a convenient reference point, then the gauge function Q, is given by 

where the symbol P indicates that the integration path is the straight line joining x‘ 
to x. 

Let the external electromagnetic field have the form 

F p y ( x )  = f , A 5 )  (8) 

& = n . x  n’=O (9) 

where f p y  is a numerical antisymmetric tensor, 

and F ( 5 )  is an  arbitrary function of 5. The field equations (2) and  (3) imply that 

nc.fp, = 0 

ncL *f,,, = 0 

from which we get 

* f p A f  = 

and with the choice of a normalisation factor 
A - *  * A -  

f p A f v -  f p A  f u - n p n u .  

For the plane-wave field of equation (8) we have 

where 

+ W e  use the same notation as Bjorken and Drell [6]. 
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Integrating and imposing the condition that x is well behaved when k +  5’ we can 
write it in the form 

where 

F ( 5 )  = dA/d&. 

We note that in this case the coordinate gauge is very convenient since, apart from 
equation (6), Ah also has the following two useful properties: 

npAL = 0 (18) 

aFA: = 0. (19) 
The Green function for a spinless charged particle in an external electromagnetic 

field satisfies the differential equation 
( T* - m * ) A ( x ,  x ’ )  = a t 4 ’ ( x  - x ’ )  (20) 

~ ~ = p , - e A , = i a , - e A , .  (21) 

A(x,  x ‘ )  = A‘(x ,  x ’ )  exp(i@(x, x ’ ) )  (22) 

where 

Denoting the Green function in the coordinate gauge by A’(x ,  x ’ )  we have 

and A‘(x,  x ’ )  satisfies equation (20) with the understanding that T, = p, - eAh. This 
interpretation of T, is used in all subsequent calculations which use the coordinate 
gauge. We also note that the coincidence of the reference point x’  in the coordinate 
gauge and the argument x’ in the Green function is not essential. We have made this 
choice for simplicity. 

A procedure for solving equation (20) is to put 

A’(x, x ’ )  = exp(-im2s)Ai(x, x ‘ )  ds (23) 16 
where the convergence factor is omitted for convenience. Thus we can determine 
A’(x, x ’ )  if we can find A , ( x ,  x ’ )  such that 

i A s ( x ,  X ’ ) I ~ + ~ +  = 8 ( 4 ) ( x  -x’)  (24) 

(ia, + r 2 ) A i ( x ,  x’) = 0 s # O .  (25) 

and 

Since the range of integration in equation (25) extends from 0 to a3 we may impose 
the condition 

A:Is<o=O (26) 

(iaY + T ’ ) A : ( x ,  x ‘ )  = 8 ( ~ ) 6 ‘ ~ ’ ( x  -x’). (27) 

which allows us to substitute equations (24) and (25) by 

Thus A : ( x ,  x ’ )  is formally the same as the Green function for a Schrodinger equation 
in a five-dimensional space with s as the ‘time’ and xF as the ‘spatial’ coordinates. 
We may identify the Hamiltonian by 

H = -T’. (28) 
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When the field is not present one may follow the usual procedure of Fourier transforma- 
tion and obtain the solution in the form 

~ ~ , ( x ,  xf) =y iO(s) exp( -i-) (x-x’)2 
(4T) s 4s 

where the suffix 0 indicates the absence of the external field. 

3. Algebraic construction of the Green function 

We remark that the differential equations (20) or (27) use the momenta T ,  which satisfy 

The last two equations indicate that T,  are not very convenient to use. We show first 
that it is possible to construct new momenta $, which reduce to p, when e + 0 ,  
commute with H and commute among themselves. Due to the special type of elec- 
tromagnetic field being considered we obtain 

[ n T,  51 = 0 (33) 

[ f , U T Y ,  51 = 0 

[ f P v ~ ’ ,  n - T] = 0 

[ n - T, HI = 0 

[fPun-’, HI = -2ien,n - TF([) 

[A((), H ] = 2 i n .  T F ( ~ )  

where there are no factor ordering problems. In fact all subsequent equations do  not 
present factor ordering problems. 

If we write 

e f , d A ( O +  e2A2(5)n, 4, = T ,  + 
n e  T 2n * T 

we can verify by direct calculation that 

[ $,, HI = 0. 

Equation (39) can be easily inverted to give 

A eAf,,&” e2A2(5)n, 
T,  = T ,  

n e  T 2 n . r  

where we used the relation 

(42) 

(43) 

If we write 

T ,  
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then we have 

It is easy to verify that 

A;g,l,fK = g,, (45) 

A t n ”  = n, (46) 

A r A z  f”“ = f,”. (47) 

so that A is a Lorentz transformation. One can also verify that 

Further, the following commutation rules hold: 

ieFf1 ie(d/d5)(A2)n”n”n, 
n .  T 

[ T’, A:] = --+ 
2( n - T)’ 

[A:, A:] = 0. 

Using the last four equations and equation ( l l ) ,  we obtain 

[ P, 6 ”1 = 0. 

Since A is not a constant-parameter Lorentz transformation there is no contradiction 

Also using equations (43) and (48) one can see that 
in having equations (3 l ) ,  (43) and (50) holding simultaneously. 

H = - ” 2  T .  (51) 

[PbL,Pyl=0 (52) 

G, = up, U-‘ (53) 

Next recalling that G+ + pp when e + 0 and 

we guess that 

where U is an unitary transformation depending on the interaction. To construct U 
it is convenient to rewrite GF in the form 

e eA’ . p e’ 
% = P & + n . p  -[A - (5 - 5’)XIf,vP - - n . p  n, +-[A2 2 n . p  - 2A(5 - 5 ’ ) x ] n , .  (54) 

The transformation 

gives 

Also if 

e’ dR 
2 n . p  d t n @  

u,p/JJ;‘=pw--- 
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then we have 

Hence 

Comparing equations (54) and (59) we get U = U ,  U, if 

rx = A - ( ( -  5’ )x  

- r2x2 - A2 + 2A( 5 - 5‘)~. di2 
d 5  
_- 

Integrating equation (61) with the help of equation (60) we obtain 

Next, using the fact that A’(x,x‘) is a matrix element of the resolvent operator 
(T’- m2)- ’  we obtain 

A’(x, X I )  = U,A,(x, x’)  U , ’  ( 6 3 )  

where U, is U in the x representation as determined above and  U,, means U in the 
limit x + x’. This gives 

A ~ ( x ,  x’) = U,A0,(x, x’) U;.’. (64) 

Next, due  to our choice of the reference point in the coordinate-gauge vector 
potential we have 

U,.= I (65) 

A’ - pAo7(x, x’) = O  (66) 

so that U, can be replaced by the identify transformation in equations (63) and (64).  

and 

In fact one can verify directly that 

UA’.  pu-‘ =A‘ e p (67) 

so that 

A’ pA:(x,  x’) = 0. 

Further, equation (29) gives 

AoP. 2n * pAo, = - (5 - 5’) 
S 

Putting all this information together we obtain equation (64) in the form 

(69) 

which leads to Schwinger’s result [2] for the Green function A(x, x’). 
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4. An alternative construction of the Green function 

In this section we exploit the observation that, in terms of the momenta &,, H is 
simply a free-particle Hamiltonian. Since the Green function A’ is a matrix element 
of the resolvent operator ( 7 ~ ’  - m2)-’ one can write down immediately A’(2, a’) where 
the arguments 2 , i ‘  refer to the eigenvalues of a position operator 2, conjugate to Gp 
were it to exist. To find A’(x, x’) it is only necessary to construct the transformation 
function from the 2 to x representation. An immediate candidate for 2, is 

iw = ux,u-’ 

which can be explicitly written in the form 

On the other hand, one may directly calculate 

which together with the condition 

[G,, %I = igpy 

suggests the form for 2, as 

where we must impose the conditions 

dRld5  = 4 5 )  

(74) 

dSld5-2R dA/d t=A’ .  (77) 
Equations (72) and (75) are the same if 

r e  

b 

b’ 
S ( 5 )  =-I A’(7) d 7  + M O  4 7 )  d7) (79) 

which are consistent with equations (76) and (77). The fact that the direct calculation 
of 2, gives the same result as that in equation (71) indicates that the form of 2, is 
essentially unique. Clearly we have 

[gp ,  i”] = 0. (80) 

2,liJ = x l p l ~ l )  (81) 

Also if 

we get 

1%) = U / & )  
where 
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Due to our choice of reference point in the form of the vector potential 

12’) = lx’). (84) 
Thus 

Due to the fact that the same unitary transformation U relates T,, 6, and x,, 2, 
we do not get a new form for A’(x, x’). On the other hand, it is satisfactory that the 
problem with external interaction has been transformed into a free-particle problem 
by the unitary transformation. 

We also note that if we define 
A 

(86) 
A A  A A  MSy = X,T, - X,T, 

the operators 6,, M,” generate a representation of the algebra of the restricted PoincarC 
group. The Pauli-Lubanski operator 

( 8 7 )  

is identically zero so that W2=O; hence the spin is zero. The propagator has a pole 
at G2 = m2 so that we have a mass-m, spin-0 representation of the PoincarC algebra. 
This, of course, does not mean that the observed mass is m since 6 includes the 
interaction. The final form of the propagator in equation (70) indicates that the 
observed mass is m + A m  where A m  > 0 since SZ > 0. 

w” = & A C L Y ~ ~  ,U 7; U 

5. Conclusion 

We have constructed the Green function for a spin-zero particle in an external plane- 
wave electromagnetic field of a general type by relating it to the free-particle Green 
function through a unitary transformation U. Starting from the variables xw, T, we 
have constructed new canonical variables 2,, , 6, with 6, behaving like free-particle 
momenta. The unitary transformation relates the pair g,, 4, to x, and p , .  The variables 
iw, 6, include the effects of the interaction and can be used to construct a fixed-mass 
spin-zero representation of the PoincarC algebra. Alternatively, the Green function 
viewed as a matrix element of the resolvent operator is simply the free-particle 
propagator in a representation in which 2, is diagonal. The multiplicative factor 
appearing in the Green function is due to the fact that a matrix element in the x 
representation is to be calculated and x, and 2w are not mutually compatible. 

It may also be noted that our results can be generalised to the case of arbitrary 
polarisation. Instead of equation (8) we could start with the external field 

2 

&(x)= c f;3”(0 (88) 

f E A  f ; ) b  = sahnynv  ( 8 9 )  

a = 1  

where one can always choose the normalisation 
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corresponding to the situation of perpendicular polarisations. All the subsequent 
equations are modified in an obvious manner. The Lorentz transformation A of 
equation (43) is replaced by a product of two commuting Lorentz transformations, 
one for each polarisation. Similarly, U will be replaced by a product of two commuting 
unitary transformations. Equation (70) will now have R ,  +R, in place of Cl. 

We also mention that a direct solution of the differential equation for the Green 
function is possible at the cost of the additional assumption [8] that 

(90)  
which amounts to imposing equation (68). The algebraic approach provides a jus- 
tification for this condition. 

We did not explicitly consider the solutions of the Klein-Gordon equation. Our 
technique yields a complete set of solutions of the Volkov type in the coordinate gauge 
with &p diagonal. The limitation to the coordinate gauge can be easily removed by 
taking into account the phase factor of equation (22). This allows us to write solutions 
in the form: 

A:(% x') = Ao,(x, x')&(5, 5 ' )  

$(x, x') = [exp(i@(x, x '))l  K$o(x) (91) 
where $o satisfies the free-particle Klein-Gordon equation. To compare with the results 
of earlier calculations [3-51 we use the gauge 

which gives 
A,(x) = q A 5 )  (92) 

[exp(i@(x, X 9 ) l  U, 
t 

= e x p { - i ' J  A . p d 7  
n . P  5' -"[I: 2 n . p  A 2 d q  -L( 5-5' Ad.)']}. ( 9 3 )  

The limit ('+ --CO with 
Finally we note that, although our final results are implicitly contained in Schwin- 

ger's paper [2], we have obtained them without having to solve the complicated 
equations of motion for the operators x+ and T+ in the Heisenberg picture. 

A d 7  finite reproduces the results of these calculations. 
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